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Letters__________________________________________________________________________________________

Comments on “Time-Domain Reflectometry Using
Arbitrary Incident Waveforms”

Jacek Izydorczyk

This paper suggests slight changes to the time-domain reflectometry
algorithm presented in the above paper.1 Proposed changes make the
algorithm simpler to implement. An example of computations is given.

Recently, I found excellent text on time-domain reflectometry pub-
lished in the above paper. While examining the references, I found that
the ideas described in the above paper probably evolved from some
earlier concepts published in [1]. The main idea of both papers is very
clever and I admire the authors for their ingenuity, but I think that the
published algorithm, concerning the impedance profile identification
of the nonuniform lossless transmission line (NLTL), is unnecessarily
complicated. I suggest below slight changes to the algorithm that make
it possible to be implemented even on a programmable calculator.

The authors of the above paper consider inverse scattering problem.
Scattering media is an NLTL approximated by a cascaded N -section
uniform line (see Fig. 1). It is assumed that the line excitation
u+(t) can have an almost arbitrary shape. The goal is to identify the
impedance profile of the transmission line—consequently, the “shape”
of the line—by detection of the reflected wave u�(t). It is known [2]
that, if the spectrum of the incident wave U+(j!) is nonzero only
for angular frequencies ! 2 h��=2� ;�=2�i, where � = �`=c is
a propagation delay across one taper of the line, then incident and
reflected waves can be exactly described by their sampled versions
u+[n] = u+(n � 2�) and u�[n] = u�(n � 2�). As a result, we can use
the reflection coefficient of the NLTL in the Z-domain

D(z) =

1

n=0

u�[n] � z�n

1

n=0

u+[n] � z�n
(1)

where z = exp(j! � 2�). If the NLTL consists of N cascaded uniform
lines, then the reflection coefficient is a rational function of the z�1

variable

D(z) =

N

n=0

bn � z
�n

N

n=0

an � z�n
=

A(z�1)

B(z�1)
: (2)

The order of the reflection coefficient N is equal to the number of
cascaded tapers. PolynomialsA(z�1) andB(z�1) can be evaluated by
a recursive formula. Incident wave U+

n (z) and reflected wave U�n (z)
at the entrance of the nth section of the NLTL are related to the incident
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Fig. 1. NLTL approximated by cascaded N -segments of a ULTL.

and reflected waves U+

n+1(z),U
1
n+1(z) at the entrance of the (n+1)st

section by a transmission matrix [2]

U+
n (z)

U�n (z)
=

1

1 + �n

1 �nz
�1

�n z�1
U+

n+1(z)

U�
n+1(z)

=Tn(z)
U+
n+1(z)

U�n+1(z)
(3)

where �n is a reflection coefficient

�n =
Zn+1 � Zn

Zn+1 + Zn
; n = 0; 1; . . . ; N: (4)

The transmission matrix Tn(z) describes reflective (and transmis-
sion) properties of the junction between two sections of a uniform loss-
less transmission line (ULTL). The transmission matrix of two cas-
caded junctions (a model of the NLTL consists of only one segment
of a ULTL in this case) is equal to the product of the transmission ma-
trices of all junctions. For example, for the first and second junction,
the transmission matrix takes the form

T0;...;1(z) =T0(z)T1(z) =

1 + �0�1z
�1 �1z

�1 + �0z
�2

�0 + �1z
�1 �0�1z

�1 + z�2

(1 + �0) � (1 + �1)
:

(5)

Equations (3) and (5) suggest that the transmission matrix for then-cas-
caded ULTL has the form

T0;...;n(z) =
T
(n)
11 (z�1) T

(n)
12 (z�1)

T
(n)
21 (z�1) T

(n)
22 (z�1)

=
Bn(z

�1) AR
n (z

�1)

An(z
�1) BR

n (z
�1)

(6)

where An(z
�1) and Bn(z

�1) are polynomials of the z�1 variable.
Polynomial AR

n (z
�1) is obtained from polynomial An(z

�1) by re-
versing the order of coefficients

A
R
n (z

�1) = z
�(n+1)

� An(z): (7)

Equation (7) means that the order of the polynomial AR
n (z

�1) is
greater then the order of the polynomial An(z

�1) by one. Polynomial
Bn(z

�1) is converted into BR
n (z

�1) in a similar way. Proof of (6)
can be done by induction. For n = 1, the validity of (6) is evident by
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inspection of (5). If (6) is true for n sections, then the transmission
matrix for n + 1 sections takes the form

T0;...;n+1(z) =
An BR

n

Bn ARn
�

1 �n+1z
�1

�n+1 z�1

1 + �n+1

=

An + �n+1B
R
n An�n+1z

�1 +BR
n z
�1

Bn + �n+1A
R
n Bn�n+1z

�1 +ARn z
�1

1 + �n+1
:

(8)

Diagonal elements ofT0;...;n+1(z) are polynomials related by the “re-
version” rule

T
(n+1)
11 (z�1)

R

=z�(n+2) � An(z) + �n+1B
R
n (z)

=z�1ARn (z
�1) + z

�1
�n+1Bn(z

�1)

=T
(n+1)
22 (z): (9)

The out-of-diagonal elements are related in a similar way as follows:

T
(n+1)
21 (z�1)

R

=z�(n+2) � Bn(z) + �n+1A
R
n (z)

=z�1BR
n (z

�1) + z
�1
�n+1An(z

�1)

=T
(n+1)
12 (z): (10)

Equations (9) and (10) complete the proof.
A different proof of (6) can be found in [2].
The reflection coefficientD(z) of the NLTL can be derived from the

transmission matrixT0;...;N(z). The termination resistanceRL can be
interpreted as the impedance of the (N+1)st semi-infinite ULTL. Due
to the lack of impedance variations inside the last ULTL, we do not
observe the reflected wave U�N+1(z) = 0

U+(z)

U�(z)
=

U+
0 (z)

U�0 (z)
=

BN(z�1) ARN (z�1)

AN (z�1) BR
N (z�1)

U+
N+1(z)

0
:

(11)

As a result, the reflection coefficient D(z) equals

D(z) =
U�(z)

U+(z)
=

AN (z�1)

BN(z�1)
: (12)

If we omit the constant factor, then the numerator AN (z�1) is equal
to the polynomial A(z�1) from (2), and the denominator Bn(z

�1) is
equal to the polynomial B(z�1).

Equation (8) shows how to compute polynomials An(z
�1) and

Bn(z
�1) if we know polynomials An�1(z�1) and Bn�1(z

�1) and
the reflection coefficient �n

An

BR
n

=
1 �n

�nz
�1 z�1

An�1

BR
n�1

: (13)

Using (13) iteratively, we can compute polynomials AN (z�1) and
BN(z�1) from reflection coefficients �0; �1; . . . ; �N starting from

A0(z
�1) = 0 and B0(z

�1) = 1: (14)

Each step of the iteration can be interpreted as the addition of a new
segment of the ULTL at the end of the NTTL.

It can be easily proven [2] that all polynomialsBn(z
�1) obtained by

means of (13) with initial conditions (14) are monic, i.e., 8n=0;1;2;...;
Bn(0) = 1.

At this point, we can use an idea from the above paper and [1], which
says that the reflected wave in the time instant tn+1 = (n + 1) � 2�
consists of the waves reflected from junctions created by the firstn-sec-
tions of the NLTL and a small component, which has traveled from the
source to the junction between nth and (n+ 1)st sections and has re-
turned to the source by the shortest way as follows:

u
�[n + 1] =

n

k=0

a
(n)
k u

+[n � k]

�

n

k=1

b
(n)
k u

�[n� k] + u
+[0]�n+1

n

k=1

(1� �
2
k): (15)

In (15), coefficients of the polynomials An(z�1) and Bn(z
�1) are

a
(n)
0 ; a

(n)
1 ; . . . ; a

(n)
n and b(n)0 ; b

(n)
1 ; . . . ; b

(n)
n , respectively. If we know

the first n reflection coefficients �0; �1; . . . ; �n, then we can compute
the coefficients of An(z�1) and Bn(z

�1) polynomials. Furthermore,
�n+1 can be evaluated from (15) using the first n + 1 samples of in-
cident and reflected waves. If we know �n+1, then we can compute,
using (13), coefficients of polynomials An+1(z�1) and Bn+1(z

�1).
The next sample of reflected wave can be used to compute �n+2 in a
similar manner. If we know the reflection coefficients of the junctions,
it is a simple task to compute the wave impedances

Zn+1 = Zn �
1 + �n

1� �n
; n = 0; 1; . . . ; N (16)

where Z0 = Rk .
The algorithm can be represented as the following piece of pseu-

docode:

for

Sampled incident and reflected waves are stored in arrays u+[N]
andu�[N], respectively. Computed reflection coefficients of junctions
are stored in the array r[N]. Coefficients of polynomials An(z�1) and
Bn(z

�1) are stored in the arrays a[N] and b[N]. Computed imped-
ances are written to arrayZ[N]. Function reverse(x;N) returns array
x with reversed order of firstN+ 1 elements. Constant Z0 is equal to
source resistance Rg .

In the algorithm, we omit tedious enumeration of all possible reflec-
tions from junctions between ULTL sections, which is a main goal of
the algorithm depicted in Fig. 4 of the above paper.

The best way to test the proposed algorithm is to use data from
measurements conducted by the authors of the above paper on a vari-
able-strip microstrip line. Since such sort of a test is not possible for
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Fig. 2. Wave incident to triangular taper and reflected wave.

Fig. 3. Original and identified impedance profile of triangular taper.

me, only simulation results will be presented. Triangular taper from the
above paper have been used for the simulation. Impedance profile of
the taper is as follows:

Z(z) =

Rg � exp 2
x

L

2

� ln
RL

Rg

; if 0 � x <
L

2

Rg � exp 4
x

L
� 2

x

L

2

� 1 � ln
RL

Rg

;

if
L

2
� x � L:

(17)

The source resistance Rg = 50 
, load resistance Rg = 80 
,
lengthL = 10 cm, and velocity of electromagnetic waves c = 108 m/s.
The incident wave has the form of a nonsymmetrical triangular wave
with a rise time from 0 to 1 V equal to 0.325 ns and a fall time from
1 V to 0 equal to 2.875 ns. Duration of the incident wave is longer then
the time needed to travel across the taper, reflect from the loading re-
sistance, and return to source. The algorithm described in [3] has been
used to simulate a reflection coefficient of the NLTL. In order to com-
pute the reflected wave, fast Fourier transform (FFT)-based convolu-
tion [4] has been used (see Fig. 2). Simulated and identified impedance
profiles are compared in Fig. 3. The reconstruction accuracy is similar
to accuracy reported in the above paper.
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Authors’ Reply

Te-Wen Pan, Ching-Wen Hsue, and Jhin-Fang Huang

We gratefully acknowledge Mr. Izydorczyk’s comments on the
above paper. Mr. Izydorczyk derives the reflection coefficient D(z)
of the nonlinear transmission line (NLTL) by using the transmission
matrix method, which is not found in the above paper. In addition, by
omitting tedious enumeration of all possible transmission-reflection
processes from junctions between uniform lossless transmission line
(ULTL) sections, the text presents a simple algorithm to compute a
wave impedance profile of the NLTL. We think the proposed algorithm
is simple and accurate enough for some practical applications. In
particular, Mr. Izydorczyk’s comments further proves that an incident
wave having the duration of pulsewidth longer than the time needed
for the wave to travel across the NLTL can be employed to characterize
the impedance profile of an NLTL.
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Corrections to “Design of an Interdigital Hairpin Bandpass
Filter Utilizing a Model of Coupled Slots”

Anatoli N. Deleniv, Marina S. Gashinova, Irina B. Vendik, and
Anders Eriksson

The above paper1 contains an error in (6). The correct form of (6)
is as follows:

P k =
1

2
V mT

k

�

Imk

0 = V mT
l Imm l 6= m

; k; l;m = 1; . . . ; n: (6)
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